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Tandem reactions1 are versatile methods for construct-
ing complex structures in one step. One of the huge
number of tandem reactions known is the Baylis-
Hillman reaction2 which has drawn considerable atten-
tion over the past few years. Diastereoselective and
enantioselective Baylis-Hillman reactions are of special
interest, and numerous examples can be found in the
recent literature dealing with these topics.2 For this
purpose, chiral activated olefins, chiral aldehydes, chiral
catalysts, or chiral solvents have been used, but only with
moderate success at atmospheric pressure. Herein we
report a new and simple protocol for a highly diastereo-
selective and enantiospecific variant of the Baylis-
Hillman reaction.

During the course of our efforts toward the total
synthesis of polycyclic natural products, Feringa’s excel-
lent work on 4-menthyloxy-butenolide (1) came to our
attention.3 1 is easily available in both enantiomeric
forms in two steps from furfural and (+)- or (-)-menthol4

and is an excellent Michael acceptor3,5 which renders 1
an ideal candidate for enantiospecific and diastereo-

selective Baylis-Hillman reactions. Additionally, the
butenolide moiety can be modified through hydrolysis or
reductive ring opening and further subsequent transfor-
mations and is thus a suitable building block for the
synthesis of complex molecules.6

Our investigations started with the standard condi-
tions for the Baylis-Hillman reaction, i.e., reaction of 1
with benzaldehyde in THF in the presence of catalytic
amounts of DABCO at room temperature. Under these
conditions no reaction occurred. Therefore, we changed
to lithium phenylselenide7 (2), a more powerful nucleo-
phile than DABCO. When a solution of 2 was treated
with a mixture of 1 and an aldehyde 3 at -60 °C, the
Michael-aldol adduct 4 could be isolated8 in high yield
and excellent diastereoselectivity after quenching with
saturated NH4Cl solution (Scheme 1, Table 1). Treatment
of 4 prior to quenching with either BnBr/nBu4NI at -60
°C or simply warming the reaction mixture to -20 °C9

led to the Baylis-Hillman product 5, again in excellent
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Scheme 1. Lithium Phenylselenide Induced
Baylis-Hillman Reaction
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yield and diastereoselectivity (Scheme 1, Table 1). The
absolute configuration10 of the new stereocenter in 5a was
determined through X-ray analysis of suitable crystals
obtained by crystallization of 5a from pentane.11 Thus,

the new chiral center in 5a has R configuration (ORTEP
in Supporting Information). This can be rationalized
through the Zimmermann-Traxler model12 of the transi-
tion state in the aldol addition step (Scheme 2). In
summary, we have successfully developed a new protocol
for the diastereoselective and enantioselective Baylis-
Hillman reaction under very mild conditions with excel-
lent yields and selectivity, which finds application in the
synthesis of complex natural products.13,14

Experimental Section

General. All reactions were carried out under nitrogen in
oven-dried flasks using syringe techniques. THF was distilled
from potassium/benzophenone. Diphenyl diselenide was pur-
chased from Acros Organics, Geel, Belgium. Aldehydes were
freshly distilled under nitrogen before use. Benzyl bromide and
tetra-n-butylammonium iodide were purchased from Aldrich,
Steinheim, Germany and were used as received.

Lithium phenylselenide (2): 10 mg of lithium powder (1.44
mmol) and some crystals of benzophenone are suspended in 3.5
mL of freshly distilled THF under argon. The suspension is
sonicated and after appearance of the blue color of benzophenone
ketyl, a solution of 190 mg of diphenyl diselenide (0.61 mmol)
in 3 mL of THF is added dropwise via syringe. Sonication is
continued until all diphenyl diselenide has been added (30 min).
The yellow solution is used in the following procedures.

Analogously, a solution of sodium phenylselenide in THF is
prepared from 28.1 mg of sodium (1.22 mmol) and 190 mg of
diphenyl diselenide (0.61 mmol).

Alternatively, a solution of lithium phenylselenide is prepared
from a solution of 190 mg of diphenyl diselenide, dissolved in 3
mL of THF under argon, by adding 0.4 mL of a 1.5 M solution
of nBuLi in hexanes (0.6 mmol) at -20 °C. The mixture is stirred
for 10 min and used immediately.

2(R)-(1′(R)-Hydroxybenzyl)-3(R)-phenylselenyl-4(R)-
(1′′(R), 2′′(S), 5′′(R)-menthyl)-oxy-butanolide (4a). Procedure
A (see Table 1). A solution of lithium phenylselenide, prepared
as described above is cooled to -60 °C and a mixture of 238.3
mg of (4R,1′R,2′S,5′R)-(+)-4-menthyloxy-2-butenolide (1) (1.00
mmol) and 159.1 mg of benzaldehyde (3a) (1.50 mmol) in 3.5
mL of THF is added dropwise during 30 min. Stirring is
continued for 8 h. Quenching with saturated ammonium chloride
solution (30 mL), extraction with ether (3 × 20 mL), and drying
of the combined organic phases with MgSO4 gives the crude
product after evaporation of the solvent in a vacuum. Purifica-
tion by flash chromatography with pentane/diethyl ether 3:1 (v/
v) gives a clear oil, which solidifies upon standing. Yield: 325.0
mg (65.0%). [R]20

D ) +75.1 (c ) 10.7; CHCl3). 1H NMR (360 MHz,
CDCl3, δ in ppm): 7.37-7.29 and 7.24-7.19 (m, 10H), 5.58 (d,
2.6 Hz, 1H), 4.93 (dd, 8.6 Hz, 2.2 Hz, 1H), 3.75 (d. 2.2 Hz, 1H),
3.45 (td, 10.6 Hz, 4.2 Hz, 1H), 3.25 (dd, 5.3 Hz, 2.6 Hz, 1H),
2.85 (dd, 8.6 Hz, 5.3 Hz, 1H), 2.06 (septd, 7.1 Hz, 2.6 Hz, 1H),
1.77 (dm, 12.8 Hz, 1H), 1.66-1.60 (m, 2 H), 1.31-1.15 (m, 2 H),
0.88 (d, 7.3 Hz, 3H), 0.86 (d, 7.1 Hz, 3H), 0.76 (d, 7.1 Hz), 0.97-
0.62 (m, 3H). 13C NMR (90.5 MHz, CDCl3) δ 175.9, 139.4, 135.2,
129.4, 128.6, 128.5, 126.9, 126.3, 105.4, 78.5, 74.4, 53.5, 47.5,
41.7, 39.5, 34.1, 31.2, 25.5, 22.8, 22.1, 20.9, 15.4. EI-MS m/z
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Table 1

a Conditions A: reaction temperature -60 °C for 4 h and
subsequent quenching with saturated NH4Cl at -60 °C. Condi-
tions B: reaction temperature -60 °C for 4 h with subsequent
addition of nBu4NI/BnBr in THF at -60 °C and stirring overnight
at this temperature. Conditions C: Sodium phenylselenide instead
of lithium phenylselenide; reaction temperature -60 °C for 4 h
with subsequent quenching with saturated NH4Cl. b Isolated yield
of pure compounds.

Scheme 2. Zimmermann-Traxler Transition State
for the Aldol Addition Step
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(relative intensity): 502 (34%); 290 (46%); 239 (15%); 139 (100%);
133 (72%); 107 (46%); 105 (47%); 83 (92%); 69 (44%); 57 (33%);
55 (65%). HRMS: calculated for C27H34O4Se: 502.16219;
found: 502.16739. IR (cm-1; CHCl3): 3523; 3064; 2956; 1761;
1456; 1101; 908.

2-(1′(R)-Hydroxybenzyl)-4(R)-(1′′(R), 2′′(S), 5′′(R)-men-
thyl)-oxy-2-butenolide (5a). Procedure B (see Table 1). A
solution of lithium phenylselenide is cooled to -60 °C and a
mixture of 238.3 mg of 4-menthyloxy-2-butenolide (1) (1.00
mmol) and 159.1 mg of benzaldehyde (3a) (1.50 mmol) in 3.5
mL of THF is added dropwise during 30 min. Stirring is
continued for 4 h, and then the reaction mixture is warmed to
-20 °C within 4 h. Quenching with saturated aqueous NH4Cl
(30 mL), extraction with diethyl ether (3 × 30 mL), drying of
the combined extracts with MgSO4, and evaporating the solvent
in a vacuum leads to the crude product which is purified by flash
chromatography with pentane/diethyl ether 5:1 (v/v). Yield:
284.0 mg (82.5%) of a clear oil which can be crystallized from
pentane. mp 84.5-85.5 °C. [R]20

D ) -65.1 (c ) 0.315; CHCl3).
With sodium phenylselenide, the same procedure results in

291.0 mg of 5a (84.5%) without warming to -20 °C (procedure
C, see Table 1).

1H NMR (360 MHz, CDCl3) δ 7.45-7.30 (m, 5H), 6.70 (s, 1H),
5.98 (s, 1H), 5.58 (s, 1H), 3.59 (td, J ) 10.6 Hz, 4.0 Hz, 1H),
3.36 (br. s, 1H), 2.09-2.05 (m, 2H), 1.68-1.62 (m, 2H), 1.39-
1.33 (m, 1H), 1.26-1.18 (m, 2H), 1.06-0.77 (m, 2H), 0.92 (d, J
) 6.5 Hz, 3H), 0.86 (d, J ) 6.5 Hz, 3H), 0,77 (d, J ) 7.1 Hz, 3H).
13C NMR (90.5 MHz, CDCl3) δ 170.4, 144.1, 139.7, 139.6, 128.7,
128.5, 126.6, 99.3, 79.3, 69.1, 47.7, 40.4, 34.1, 31.4, 25.3, 23.1,
22.1, 20.8, 15.8. EI-MS m/z (relative intensity): 344 (6%); 206
(96%); 188 (72%); 178 (100%); 115 (37%); 112 (34%); 95 (42%);
83 (61%); 81 (65%); 69 (55%); 55 (64%);. HRMS: calculated for
C21H28O4: 344.19874; found: 344.20575. IR (cm-1; CHCl3): 3530;
3022; 2957; 1761; 1336; 1184; 1015.

2-(1′(S)-Hydroxy-2′-methylpropyl)-4(R)-(1′′(R), 2′′(S),5′′(R)-
menthyl)-oxy-2-butenolide (5b). Procedure B. 238.3 mg of 1
(1.00 mmol) and 108.0 mg of isobutyraldehyde (3b) (1.50 mmol).
Reaction temperature -55 °C. Solvent for flash chromatogra-
phy: pentane/diethyl ether 2:1 (v/v). Yield: 276.2 mg of 5b
(89.0%) as a colorless oil. [R]20

D ) +141.0 (c ) 5.66; CHCl3). 1H
NMR (360 MHz, CDCl3) δ 6.91 (s, 1H), 5.99 (s, 1H), 4.29 (d, J )
5.3 Hz, 1H), 3.61 (td, J ) 10.6 Hz, 4.0 Hz, 1H), 3.01 (br. s, 1H),
2.15-2.02 (m, 3H), 1.67-1.61 (m, 2H), 1.41-1.33 (m, 1H), 1.29-
1.17 (m, 2H), 1.08-0.82 (m, 2H), 0.94 (d, J ) 7.1 Hz, 3H), 0.91
(d, J ) 5.8 Hz, 3H), 0.90 (d, J ) 7.1 Hz, 3H), 0.83 (d, J ) 7.1 Hz,
3H), 0.76 (d, J ) 7.1 Hz, 3H). 13C NMR (90.5 MHz, CDCl3) δ
170.6, 144.1, 138.9, 99.1, 79.0, 71.8, 47.6, 40.3, 34.2, 32.3, 31.4,
25.4, 23.3, 22.1, 20.7, 18.9, 16.4, 15.9. EI-MS m/z (relative
intensity): 292 (1%); 139 (86%); 138 (100%); 130 (31%); 113
(46%); 95 (50%); 83 (94%); 81 (83%); 55 (74%). HRMS calculated
for C18H28O3 ([M - H2O]+): 292.20383; found: 292.20691. IR
(cm-1; CHCl3): 3513; 3032; 2958; 1763; 1466; 1397; 1340; 1127;
1021.

2-(1′(S)-Hydroxy-2′,2′-dimethylpropyl)-4(R)-(1′′(R),2′′(S),5′′-
(R)-menthyl)-oxy-2-butenolide (5c). Procedure B. 238.3 mg
of 1 (1.00 mmol) and 129.2 mg of pivalinaldehyde (1.50 mmol).

Reaction temperature -50 °C. Solvent for flash chromatogra-
phy: pentane/diethyl ether 2:1 (v/v). Yield 218.3 mg (67.3%) as
a clear oil. [R]20

D ) +101.2 (c ) 1.95; CHCl3). 1H NMR (360 MHz,
CDCl3) δ 6.94 (s, 1H), 6.02 (s, 1H), 4.25 (br. s, 1H), 3.65 (td, J )
11.0 Hz, 4.5 Hz, 1H), 2.79 (br. s, 1H), 2.16-2.02 (m, 2H), 1.69-
1.63 (m, 2H), 1.46-1.34 (m, 1H), 1.32-1.18 (m, 2H), 1.12-0.85
(m, 2H), 0.95 (d, J ) 6.5 Hz, 3H), 0.95 (s, 9H), 0.86 (d, J ) 7.2
Hz, 3H), 0.79 (d, J ) 7.2 Hz, 3H). 13C NMR (90.5 MHz, CDCl3)
δ 171.1, 145.4, 137.8, 98.8, 79.0, 74.5, 47.7, 40.3, 35.8, 34.2, 31.4,
25.6, 15.4, 23.4, 22.2, 20.7, 16.0. EI-MS m/z (relative inten-
sity): 268 (1%); 152 (21%); 139 (43%); 130 (100%); 112 (42%);
95 (29%); 83 (75%); 81 (40%); 57 (66%);. HRMS: calculated for
C15H24O4 ([M - C4H8]+): 268.16744; found: 268.16969. IR (cm-1;
CHCl3): 3513; 3021; 2958; 1759; 1455; 1368; 1341; 1019.

2(S)-(1′(S)-Hydroxy-1′-(E)-styrylmethyl)-3(R)-phenyl-
selenyl-4(R)-(1′′(R),2′′(S),5′′(R)-menthyl)-oxy-butanolide (4d).
Procedure A. 238.3 mg of 1 (1.00 mmol) and 198.3 mg of cinnamic
aldehyde (1.5 mmol). Reaction temperature -50 °C to -30 °C.
Solvent for flash chromatography: pentane/diethyl ether 3:1 (v/
v). Yield: 421.0 mg of 4d (79.8%) as colorless oil. [R]20

D ) +96.8
(c ) 2.2; CHCl3). 1H NMR (360 MHz, CDCl3) δ 7.60-7.50 (m,
2H), 7.39-7.20 (m, 8H), 6.65 (d, J ) 16.2 Hz, 1H), 6.26 (dd, J )
7.1 Hz, 16.2 Hz, 1H), 5.62 (d, J ) 3.9 Hz, 1H), 4.59 (t, J ) 7.1
Hz, 1H), 3.51 (dd, J ) 3.9 Hz, 7.1 Hz, 1H), 3.47 (td, J ) 3.9 Hz,
10.4 Hz, 1H), 3.34 (br. s, 1H), 2.76 (t, J ) 7.1 Hz, 1H), 215-2.06
(m, 1H), 1.85 (m, 1H), 1.65-1.59 (m, 2H), 1.39-1.25 (m, 1H),
1.25-1.18 (m, 1H), 1.02-0.68 (m, 3H), 0.89 (d, J ) 6.5 Hz, 3H),
0.85 (d, J ) 7.1 Hz, 3H), 0.76 (d, J ) 6.5 Hz, 3H). 13C NMR
(90.5 MHz, CDCl3) δ 174.8, 136.0, 135.6, 133.2, 129.4, 128.8,
128.5, 128.0, 127.5, 126.8, 126.3, 105.5, 78.9, 72.7, 52.3, 47.5,
41.9, 39.7, 34.1, 31.2, 25.3, 22.8, 22.1, 20.8, 15.5. EI-MS m/z
(relative intensity): 528 (3%); 215 (28%); 158 (24%); 139 (51%);
133 (100%); 131 (73%); 83 (94%); 55 (78%); HRMS calculated
for C29H36O4Se: 528.17784; found: 528.18305. IR (cm-1;
CHCl3): 3510; 2957; 1759; 1339; 1103; 968; 939.
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